Math 115
Summer 2017
Lecture 1

Ch. 1 order of operations, Properties of real numbers, evaluating expressions, and Some basic translation
Order of operations:

1) Do inside of groups: ($),[],\{ \}$,

$$
\mid 1,-, \sqrt{2},-
$$

2) Do exponents $̇$, roots
3) Multiplication ard division from $L 2 R$.
4) Addition $\dot{\varepsilon}$ Subtraction from L2R.

Simplify:
1)

$$
\begin{aligned}
& 36 \div 3^{2}-2^{2}=36 \div 9-4 \\
&=4-4 \\
&=0 \text { Do not use } \phi \text { for } \\
& \text { zero. }
\end{aligned}
$$

2) $\sqrt{10^{2}-8^{2}}-3 \cdot 2=\sqrt{100-64}-3 \cdot 2$

$$
\begin{aligned}
& =\sqrt{36}-3 \cdot 2 \\
& =6-3 \cdot 2 \\
& =6-6=0
\end{aligned}
$$

3) $\frac{|-5 \cdot 2|}{-\sqrt{4^{2}+(-3)^{2}}}=\frac{|-10|}{-\sqrt{16+9}}=\frac{10}{-\sqrt{25}}=\frac{10}{-5}=-2$
4) $\left(10^{2}-5 \cdot 2^{2}\right) \div(\sqrt{169}-\sqrt{144})$

$$
\begin{aligned}
& =(100-5 \cdot 4) \div(13-12) \\
& =(100-20) \div(1)=80 \div 1=80
\end{aligned}
$$

$\sqrt{ } \quad$ Square root. $\sqrt{R}=$ Ans $\quad A n s^{2}=$,
5) $\frac{7\left(5 \cdot 2-3^{2}\right)}{2^{4}-(-4)^{2}}=\frac{7(10-9)}{16-16}=\frac{7 \cdot 1}{0}=\frac{7}{0}$

$$
\begin{gather*}
0 \\
(-4)(-4)=16 \\
\text { Nonzero } \\
\text { Zero }
\end{gather*}
$$

= undefined
6)

$$
\begin{aligned}
& \left(\sqrt{\frac{16}{25}}-\sqrt{\frac{49}{100}}\right) \div\left(-2 \frac{2}{5}\right) \\
& =\left(\frac{4 \cdot 2}{5 \cdot 2}-\frac{7}{10}\right) \div\left(-\frac{12}{5}\right) \\
& \text { LCD }=10
\end{aligned}
$$

8)

$$
\begin{aligned}
& \frac{10}{45}+\sqrt{\frac{25}{49}=}=\frac{5 \cdot 2}{5 \cdot 9}+\frac{5}{7} \\
&= \frac{2 \cdot 7}{9 \cdot 7}+\frac{5 \cdot 9}{7 \cdot 9} \\
& \text { LCD }=9 \cdot 7=63 \\
&= \frac{14}{63}+\frac{45}{63}=\frac{59}{63}
\end{aligned}
$$

Find the area

$$
A=L W
$$

$$
\begin{aligned}
A & =L \omega \\
& =3 \frac{1}{3} \cdot 2 \frac{1}{4} \\
& =\frac{10}{3} \cdot \frac{x^{3}}{4_{2}} \\
& =\frac{15}{2} \\
A & =7 \frac{1}{2} \mathrm{ft}^{2}
\end{aligned}
$$

Find the shaded area: | A | $=A_{\text {Rectangle }}-A_{\text {Square }}$ |
| ---: | :--- |
| | $=(18.5)(7.2)-2.8^{2}$ |
| $2.8 \mathrm{in} .2 in.$. | |
| | $=125.36 \mathrm{in}^{2}$ |
| 18.5 in. | |

find shaded area

$$
\begin{aligned}
A & =\frac{A_{\text {circle }}}{4}+A_{\text {Triangle }} \\
A & =\frac{\pi r^{2}}{4}+\frac{b h}{2} \\
& =\frac{(3.14)(10)^{2}}{4}+\frac{20.10}{2} \\
A & =178.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
\frac{3}{5}-\frac{1}{2}-\frac{7}{10} & =\frac{3 \cdot 2}{5 \cdot 2}-\frac{1 \cdot 5}{2 \cdot 5}-\frac{7}{10} \\
L_{C D}=10 & =\frac{6}{10}-\frac{5}{10}-\frac{7}{10}=\frac{-6}{10} \\
& =-\frac{3}{5}
\end{aligned}
$$

Simplify

$$
\begin{aligned}
&\left(\frac{8}{15}-\frac{7}{10}\right) \cdot\left(1 \frac{1}{4}-3 \frac{1}{3}\right) \\
& L C D=30 \\
&=\left(\frac{8 \cdot 2}{15 \cdot 2}-\frac{7 \cdot 3}{10 \cdot 3}\right) \cdot\left(\frac{5 \cdot 3}{4 \cdot 3}-\frac{10 \cdot 4}{3 \cdot 4}\right) \\
& L C D=2 \\
&=\left(\frac{16}{30}-\frac{21}{30}\right) \cdot\left(\frac{15}{12}-\frac{40}{12}\right)=\frac{\frac{1}{30}}{\frac{1}{6}} \cdot \frac{-25}{12}=\frac{25}{72}
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& \frac{210}{\frac{11}{3}} \cdot \frac{2_{4}^{2}}{15}-\frac{2}{3} \\
& =\frac{4}{9}-\frac{2 \cdot 3}{3 \cdot 3}=\frac{4}{9}-\frac{6}{9}=\frac{-2}{9} \\
& L C D=9
\end{aligned}
$$

Mathematical Expressions
It is a combination of numbers, operations, and letters (Variables).

$$
5 x+3,2 x^{2}-7 x-4, \sqrt{x^{2}+y^{2}}, \frac{x^{2}-4}{x^{3}-8}
$$

For now, we do a couple of things with expressions

- Evaluate
- Simplify

Evaluate

$$
\begin{aligned}
& -2 x^{2}-5 \quad \text { for } x=-4 . \\
= & -2(-4)^{2}-5 \\
= & -2(16)-5=-32-5=-37 \\
& x^{3}-y^{2} \quad \text { for } x=-4, \text { and } y=8 . \\
= & (-4)^{3}-(8)^{2}=-64-64 \\
& =-64+(-64)=-128
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x^{2}-4}{x^{3}+8} \text { for } x=-2 \\
& =\frac{(-2)^{2}-4}{(-2)^{3}+8}=\frac{4-4}{-8+8}=\frac{0}{0} \text { indeterminate } \\
& \frac{\text { Zero }}{\text { NonZero }}=\text { Zero, } \frac{\text { NonZero }}{\text { Zero }}=\text { undefined }
\end{aligned}
$$

$$
\frac{\text { Zero }}{\text { Zero }}=\text { indeterminate }
$$

$$
\begin{aligned}
& \frac{\sqrt{x^{2}+y^{2}}}{x-y} \quad \text { for } x=-3, \dot{\varepsilon} y=-4 . \\
& =\frac{\sqrt{(-3)^{2}+(-4)^{2}}}{(-3)-(-4)}=\frac{\sqrt{9+16}}{-3+4}=\frac{\sqrt{25}}{1}=\frac{5}{1}=5 \\
& \begin{aligned}
\frac{2 x-3 y}{\sqrt{y^{2}-4 x^{2}}} & \text { for } x=-5, y=10 . \\
& =\frac{2(-5)-3(10)}{\sqrt{10^{2}-4(-5)^{2}}}=\frac{-10-30}{\sqrt{100-100}}=\frac{-40}{0}
\end{aligned}
\end{aligned}
$$

$$
(-)^{\text {even }}=+,(-)^{\text {odd }}=-
$$

Evaluate

1) $(-3)^{4}=81$
2) $(-2)^{5}=-32$
3) $-4^{2}=\frac{-16}{-16}$
4) $-(-3)^{2}=-9=-9$

$$
\begin{aligned}
5) & -\left(-10^{2}\right) \\
= & -(-100)=100
\end{aligned}
$$

To Simplify expressions, we Combine like terms.
like Terms \Rightarrow Same Variable غ̇. Same exponent

$$
5 x^{2},-7 x^{2}, \frac{2}{3} x^{2},-x^{2}, 8 y^{2}, 12 x
$$

like terms
Unlike terms

$$
\underbrace{5 x^{3} y^{4},-12 x^{4} y^{3}, 200 x^{3} y,-45 x^{2} y^{4}, 6 z^{3 / 4}+t^{4}}
$$

Unlike terms

Simplify: $\underbrace{7 x+3 x}-4 x$

$$
=10 x-4 x=6 x
$$

Simplify: $3 x^{2}+47 y^{2}-5 x^{2}+2 y^{2}$

$$
=-2 x^{2}+9 y^{2}
$$

Simplify: $12 x^{2}-7 x+8-3 x^{2}-x+8$

$$
=9 x^{2}-8 x=9 x^{2}-8 x
$$

find the perimeter:

$$
P=a+b+c
$$

$$
\begin{aligned}
& P=2 x^{2}-3 x x+3 x^{2}-4 x x+1+5 x^{2}+7 x-4 x \\
& P=10 x^{2}
\end{aligned}
$$

1) Evaluate $(x-y)^{2}+2 x y$ for $x=2.5$,

$$
\begin{aligned}
& =(2.5--3.5)^{2}+2(2.5)(-3.5) \\
& =6^{2}-2(2.5)(3.5)=36-17.5=18.5
\end{aligned}
$$

2) Simplify: $25 x^{3}-18 x^{2}+7 x-2-5 x^{3}+19 x^{2}-7 x+2$

$$
=20 x^{3}+1 x^{2}=20 x^{3}+x^{2}
$$

Properties of Real numbers:

1) Commutative Prop.

$$
\begin{aligned}
& a+b=b+a \\
& a \cdot b=b \cdot a \\
& 7+13=13+7 \\
& -8 \cdot 5=5 \cdot(-8)
\end{aligned}
$$

2) Associative Prop.

$$
(x+5)+8=x+(5+8)
$$

$$
\begin{aligned}
& (a+b)+c=a+(b+c) \\
& (a \cdot b) \cdot c=a \cdot(b \cdot c)
\end{aligned}
$$

$$
(4 \cdot 3) \cdot 10=4 \cdot(3 \cdot 10)
$$

3) Distributive Prop

$$
4(x+3)=4 x+4 \cdot 3
$$

$$
=4 x+12
$$

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& a(b-c)=a b-a c \\
= & 3\left(2 x^{2}\right)-3(5 x)+3(8) \\
= & 6 x^{2}-15 x+24
\end{aligned}
$$

$$
3\left(2 x^{2}-5 x+8\right)=3\left(2 x^{2}\right)-3(5 x)+3(8)
$$

Distribute es Simplify

$$
\begin{aligned}
& 3\left(2 x^{2}-4 x+10\right)-2\left(3 x^{20}-6 x+15\right) \\
& =6 x^{2}-12 x+30-6 x^{2}+12 x-30=0
\end{aligned}
$$

Identity Prop.

$$
\begin{aligned}
& a+0=a \\
& a \cdot 1=a
\end{aligned}
$$

$$
\begin{aligned}
& 7 x+0=7 x \\
& -4 x^{2} \cdot 1=-4 x^{2}
\end{aligned}
$$

Inverse Prop.

$$
5 x^{3}+\left(-5 x^{3}\right)=0
$$

$$
\begin{aligned}
& a+(-a)=0 \\
& a \cdot \frac{1}{a}=1, a \neq 0
\end{aligned}
$$

$25 \cdot \frac{1}{25}=1$

Name the properties used:

$$
\begin{array}{rlr}
4(x+1)-4 & =4 x+4 \cdot 1-4 & \text { Dist. } \\
& =4 x+\underbrace{\frac{d}{6}-4} & \text { Identity } \\
& =4 x+0^{+2} & \text { Inverse } \\
& =4 x & \text { Identity }
\end{array}
$$

Name the Properties used:

$$
\begin{aligned}
2\left(\frac{1}{2} x-1\right)+2 & =2\left(\frac{1}{2} x\right)-2 \cdot 1+2 \text { Dist } \\
& =\left(2 \cdot \frac{1}{2}\right) x-2 \cdot 1+2 \text { Assoc } \\
& =1 x-\frac{d}{d}+2 \text { Inverse, } \\
& =\frac{d}{d}-2+0 \text { Ident. } \\
& =x+\text { Inverse } \\
& =x
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& \frac{2}{3}\left(\frac{3}{2} x-1\right)+\frac{2}{3} \\
& =\frac{2}{3} \cdot\left(\frac{3}{2} x\right)-\frac{2}{3} \cdot 1+\frac{2}{3} \\
& =\left(\frac{2}{3} \cdot \frac{3}{2}\right) x-\frac{2}{3}+\frac{2}{3} \\
& =1 x-0 \\
& =x
\end{aligned}
$$

Simplify

$$
\begin{aligned}
& 4(2+3 x)-2(4+6 x) \\
& =8+12 x-8-12 x \\
& =12 x+8-8-12 x \\
& =12 x+0-12 x \\
& =12 x-12 x=0
\end{aligned}
$$

Basic Translation:
use Variables for unknowns The sum of Some number and 10 . R

$$
x+10
$$

The difference of 15 and

3 times $\underbrace{}_{\frac{\text { Some }}{} \frac{\text { number }}{x} \text { increased by }}$
Square of the number.

$$
3 x+x^{2}
$$

4 times the sum of 10 and Some number reduced by 40 .

$$
4(10+x)-40
$$

-2 times the difference of two numbers increased by the product of the two numbers.

$$
-2(x-y)+x y
$$

Square root of Some number added to 4 times the number squared.

$$
4 x^{2}+\sqrt{x}
$$

added to
(Subtracted from Reverse them.

Some number cubed Subtracted from 3 times the number.

$$
3 x-x^{3}
$$

The quotient of 10 and Some number is equal to the number.

$$
\frac{10}{x}=x
$$

The quotient of Some number and 5 more than the number is equal to the ratio of 2 to 3 .

$$
\frac{x}{x+5}=\frac{2}{3}
$$

The number of females in the classroom is 3 fewer than twice the number of males. Males $\rightarrow x$ Females $\rightarrow 2 x-3$

Draw غ̀ label:
Two sides of a triangle are equal. Third sides is 4 inches shorter than the Sum of equal Sides.

